Python AI Agent Mastery Hub

Python AI Agent Mastery Hub | Python AI 代理精通中心

Python AI Agent Mastery Hub

Master the art of building intelligent agents through interactive learning, practical examples, and real-time visualization

🤖 Understanding AI Agents

Perception

Sensing environment

Decision

Processing & reasoning

Action

Executing response

🟢 Agent Ready

🎮 Interactive Agent Simulations

Rule-Based Agent

Learning Agent

💻 Python Implementation Examples

# Simple AI Agent Example
class SimpleAgent:
    def __init__(self):
        self.state = "exploring"
        self.memory = []
        self.knowledge_base = {
            "greetings": ["hello", "hi", "hey"],
            "farewell": ["bye", "goodbye", "see you"]
        }
    
    def perceive(self, input_data):
        """Process environmental input"""
        processed_input = input_data.lower().strip()
        self.memory.append(processed_input)
        return processed_input
    
    def decide(self, perception):
        """Make decisions based on perception"""
        for category, keywords in self.knowledge_base.items():
            if any(keyword in perception for keyword in keywords):
                return f"respond_to_{category}"
        return "default_response"
    
    def act(self, decision):
        """Execute action based on decision"""
        actions = {
            "respond_to_greetings": "Hello! How can I help you?",
            "respond_to_farewell": "Goodbye! Have a great day!",
            "default_response": "I'm processing your request..."
        }
        return actions.get(decision, "Unknown action")

# Usage example
agent = SimpleAgent()
user_input = "Hello there!"

# Agent cycle: Perceive -> Decide -> Act
perception = agent.perceive(user_input)
decision = agent.decide(perception)
response = agent.act(decision)

print(f"User: {user_input}")
print(f"Agent: {response}")

📈 Your Learning Journey

Concepts Mastered

75% Complete

Practical Skills

60% Complete

Project Experience

40% Complete

📚 Continue learning to unlock advanced features!

此網誌的熱門文章

自訂網路結構的神經網路訓練與預測 (動畫+公式+損失/激活函數

Customizable Neural Network Training and Prediction (Animations + Formulas + Loss/Activation Functions)